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Introduction

Example, off-line destructive mechanical testing of test coupons (tensile, hardness, charpy)

Brinell hardness estimation 

RMSE

Replace destructive testing <5

Partly replace destructive testing <25



Background

Hardness vs P-wave velocity 

measured with LUS [1] 

Hardness vs S-wave velocity measured with EMAT, and P-wave velocity measured 

with conventional immersion tank ultrasound.
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Swerim laser ultrasound laboratory

Generation laser
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Setup and samples
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D
e

te
c
to

io
n

la
s
e

r

Scanning direction

Sample information

• 244 samples

• 16 elemental fractions

• Carbon equivalent

• Tempering temperature

• Brinell hardness [HB]

• 8 mm thickness

• Sample temperature
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Typical B- and A-scans

P-waves

PS-waves S-wave



Machine learning method 
overview

• Three machine learning algorithms 

• Combinations of LUS and process 

data

• 7 algorithm-dataset combinations

• Hyperparameter optimization

• Dataset split into 4 parts:

train (70%), 

validation (10%), 

model comparison (test 1, 10%), 

final evaluation (test 2, 10%)

MLP
Multilayer perceptron

CNN
Convolutional neural network

XGBoost
Extreme gradient boosting



LUS features

P2

PS S2

Time-of-flight for:

• P2-P12

• S2

• PS, P3S and P5S

P4 P6

P3S P5S

P8



Extreme gradient boosting
(XGBoost)

• Specific implementation of gradient boosting
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Multilayered perceptron (MLP)

• Fully connected neural 

network.

• Hyperparameters:

oHidden layers

oUnits in hidden layers

oDropout

oMinibatch size
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Convolutional neural network 
(CNN-LUS)
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Inputs: A-scans and sample temperatures



Convolutional neural network 
(CNN-ALL)
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Inputs: A-scans, sample temperatures

and production data



Results
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Results

• Best model: XGBoost-ALL

• Worst model: XGBoost-LUS
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XGBoost-LUS XGBoost-ALL



Results



Results

Model
RMSE Validation 

[HB]

RMSE Test 1 

[HB]

XGBoost-LUS 58.0 102.1

MLP-LUS 52.4 63.5

CNN-LUS 45.3 63.1



Conclusions (1/3)

• The LUS measurements on their own was not able to infer the brinell 

hardness accurately enough

Brinell hardness 

estimation RMSE

Replace destructive 

testing

<5

Partly replace destructive 

testing

<25



Conclusions (2/3)

• Using the A-scans directly to train a CNN performed just as well as the 

MLP model with time-of-flight as input

• Eliminate the need for pre-processing at the cost of slower computation

• Advancements in neural network architectures for image analysis could 

serve as an inspiration for future research



Conclusions (3/3)

• The Brinell hardness of these samples can be accurately estimated using 

LUS and material data

• LUS adds additional information that improves the model
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