Fluidized bed pilot plant
The fluidized bed process presents good potential for utilizing raw materials that have a higher content of pollutants. With our advanced pilot facility and the knowledge centre FLUBET, we wish to secure a world-leading position as a developer of metallurgical processes in large pilot scale.

Applications

METALLURGY
The initial metallurgical application is pretreatment of concentrates prior to smelting. This involves:
- drying with air
- thermal treatment (calcination)
- oxidation (roasting)
- reduction
The facility can be used for both oxidation and reduction processes. The metal concentrate can then be smelted and refined in pilot scale in Swerea MEFOS’s electric arc furnaces or converter.

ENERGY
Fluidized beds are now being used in very large scale, particularly for heat and electricity production in combined heat and power plants (cogeneration). The pilot plant enables pilot-scale research towards the development of energy conversion and gasification processes. Development of new methods of heat recovery is another important area.

RECYCLING AND ENVIRONMENT
The fluidized bed process is an interesting route for recycling various types of waste. For example, the process can be used to separate fluorides from dust and dried sludge via calcination.

THE FUTURE
New fluid bed processes have very great potential, but more development is needed. An important area is extraction of base metals from mineral concentrates containing undesirable elements such as arsenic. Other areas are increased use of residual products from metallurgical processes, and increased utilization of residual heat from the steel, non-ferrous metals and mining industries for power and heat production or upgrading of forest biomass fuels. This technology can potentially generate considerable value in many primary industries, in the forestry industry and for energy producers.
Owing to growing world demand for metallic raw materials, lower-grade ore deposits with a higher content of undesirable elements will be economically feasible if suitable extraction processes can be developed.
Technical specifications

DIMENSIONS

<table>
<thead>
<tr>
<th>Fluidizing</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>inner diameter</td>
<td>200 mm</td>
</tr>
<tr>
<td>height</td>
<td>2,000 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clearance</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>inner diameter</td>
<td>300 mm</td>
</tr>
<tr>
<td>height</td>
<td>6,000 mm</td>
</tr>
</tbody>
</table>

GAS HEATER FOR FLUIDIZING
- Synthetic air
- Nitrogen gas
- Argon or reducing gases

MASS-FLOW-CONTROLLED MATERIAL HANDLING
- Two separate twin screw feeders
- Separate vibratory feeder for bed material

CAPACITY
20-50 kg material/hr up to 1000°C

CONTROLLED COOLING
The final product is cooled in an inert atmosphere.

ADVANCED, FLEXIBLE GAS CLEANING
- Double cyclones for particle separation
- Post combustion of particulate matter
- Gas cleaning with the aid of controlled gas cooling, electrostatic filters in series, with a dry textile filter and a wet venturi scrubber and, finally, an SO₂ scrubber.
The fluid bed process

In the fluid bed process, fine-grained raw material 1 meets a heated gas stream with a predetermined composition 2 for fluidising in the reactor vessel 3.

The reaction takes place through the rapid heating up of the particles in the intensive contact with the heated fluidised sand bed, the hot gas and the hot reactor wall 4. Fluidisation, in this case, entails the force of gravity on the particles in the bed being balanced by the upward forces of the gas stream. The system’s gas and particles will, macroscopically seen, behave like a liquid.

By controlling the speed and composition of the gas, a continuous reaction and production of raw material takes place. The freeboard is equipped with a side heater to compensate for cooling loss 5.

The reacted powder product is separated via two cyclones 6, cooled and collected in a protective vessel outside the plant 7.

The gas is sent via a heated afterburner 8 to a gas cooler 9 before purification and dust separation takes place in an electrostatic filter 10 and a venturi scrubber 11, alternatively a bag filter 12. Finally, the gas is purified of any acid gases in a wet scrubber 13.
Knowledge centre FLUBET – Fluidized bed pilot plant

In combination with the fluidized bed plant, the knowledge centre FLUBET has been established. In addition to Swerea MEFOS, partners in the centre include base metals producer Boliden, LTU Energy Engineering and Process Metallurgy, and ETC – the Energy Technology Centre, which develops biomass gasification processes. The objective is to jointly create an international-calibre knowledge centre.